genetic information stored in DNA molecules is used as a blueprint for making proteins. Why proteins? Because these macromolecules have diverse primary, secondary and tertiary structures that equip them to carry out the numerous functions necessary to maintain a living organism. As noted in the protein chapter, these functions include:
• Structural integrity (hair, horn, eye lenses etc.).
• Molecular recognition and signaling (antibodies and hormones).
• Catalysis of reactions (enzymes)..
• Molecular transport (hemoglobin transports oxygen).
• Movement (pumps and motors).
• Molecular recognition and signaling (antibodies and hormones).
• Catalysis of reactions (enzymes)..
• Molecular transport (hemoglobin transports oxygen).
• Movement (pumps and motors).
The critical importance of proteins in life processes is demonstrated by numerous genetic diseases, in which small modifications in primary structure produce debilitating and often disastrous consequences. Such genetic diseases include Tay-Sachs, phenylketonuria (PKU), sickel cell anemia, achondroplasia, and Parkinson disease. The unavoidable conclusion is that proteins are of central importance in living cells, and that proteins must therefore be continuously prepared with high structural fidelity by appropriate cellular chemistry.
Early geneticists identified genes as hereditary units that determined the appearance and / or function of an organism (i.e. its phenotype). We now define genes as sequences of DNA that occupy specific locations on a chromosome. The original proposal that each gene controlled the formation of a single enzyme has since been modified as: one gene = one polypeptide. The intriguing question of how the information encoded in DNA is converted to the actual construction of a specific polypeptide has been the subject of numerous studies, which have created the modern field of Molecular Biology.
Early geneticists identified genes as hereditary units that determined the appearance and / or function of an organism (i.e. its phenotype). We now define genes as sequences of DNA that occupy specific locations on a chromosome. The original proposal that each gene controlled the formation of a single enzyme has since been modified as: one gene = one polypeptide. The intriguing question of how the information encoded in DNA is converted to the actual construction of a specific polypeptide has been the subject of numerous studies, which have created the modern field of Molecular Biology.
No comments:
Post a Comment